
Abstract. A practical means of overcoming the limita-
tion in accuracy of conformational analysis due to
incompleteness of basis sets used in ab initio calcula-
tions involves calculating the energy with a series of
systematically improving basis sets and extrapolating to
the basis set limit. We report here a focal-point con-
formational analysis for methanol. The Hartree–Fock
energy converges exponentially to the basis set limit,
while the convergence of second-order correlation
energy is well described by the formula Ecor

X ¼ Ecor
1 þ

A3X�3 þ A5X�5. This formula also describes well the
convergence of fourth-order correlation energy. The
height of the rotational barrier at the Hartree–Fock level
can be obtained reliably by taking the difference of the
extrapolated energies of the two conformations and
correcting the difference for correlation effects. Electron
correlation has only a small decreasing effect on the
height of the rotational barrier in methanol. The focal-
point value for the torsional barrier in methanol is
0.999±0.007 kcal/mol.

Keywords: Basis set extrapolation – Conformational
analysis – Focal-point analysis – Torsional barrier –
Methanol

Introduction

Conformational energies of molecules can be calculated
accurately by quantum chemical methods that describe
the electron correlation effects correctly. However, cor-
related ab initio calculations converge slowly with
respect to the basis set size [1, 2], and the use of small
basis sets is not recommended for correlated quantum

chemical calculations [3, 4]. Unfortunately, correlated ab
initio calculations with nearly complete basis sets are not
feasible at the present time owing to the high cost of
calculating multielectron integrals. A practical means of
assessing the energy of a molecular system at the basis
set limit involves a series of calculations with systemat-
ically larger basis sets followed by extrapolation to the
basis set limit. Combining the basis set extrapolation
method with systematically improved treatments of
electron correlation will hopefully lead to energies and
other properties that converge to a focal point. Many
basis set extrapolation studies have been performed
previously to assess the convergence of energies and
dipole moments in small molecules [5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15]. Recently, some studies have applied this
approach to the conformational analysis of molecules
such as ethane, methyl formate, glyoxal, and aziridine-
2-carbonitrile [16, 17, 18]. We now report a systematic
focal-point conformational analysis of methanol. Cal-
culations with basis sets up to cc-pV6Z were performed
and reference data using the explicitly correlated MP2-
R12 method were obtained, allowing us to critically
compare various extrapolation schemes.

Basis set extrapolation

Different approaches to extrapolate ab initio energies to
the basis set limit have been reported in the literature
recently [2, 13, 16, 19, 20, 21, 22, 23]. In one of the
earliest uses of the extrapolation technique, simple
exponential fits of the total MP2 energy difference were
performed to estimate the limiting value for the inter-
action energy between two water molecules [5]. Expo-
nential fits, as well as mixed exponential–Gaussian fits of
total energies have been used by Dunning’s group [24,
25]. Use of such extrapolation formulas has been justi-
fied on the basis of a statistical goodness of fit. More
recently, extrapolation formulas based on quantum
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theory have been used. Typically, the Hartree–Fock
(HF) and correlation energies are extrapolated sepa-
rately to the limit and the extrapolated results are
combined to obtain the total energy. The HF energy
decreases exponentially (Eq. 1) with the cardinal num-
ber X when correlation-consistent basis sets of the type
cc-pVXZ are used [11, 26]:

EX ¼ E1 þ Aexp �BXð Þ: ð1Þ

Theoretical considerations and experience indicate
that convergence of correlation energies follows an in-
verse power series [1, 12, 19, 21]. In particular, Schwartz
[27] has demonstrated that the leading term for the
second-order correlation energy for the helium atom
ground state should converge asymptotically with re-
spect to the angular momentum quantum number, l, as

DEcor
l ¼ � 45

256
lþ 1

2

� ��4
: ð2Þ

A similar result was later derived for many-electron
atoms by Kutzelnigg and Morgan [1], who also showed
that the second term for natural parity singlet pairs
converges as (l+1/2))6. The leading term for second-
order energy due to triplet pairs also converges as
(l+1/2))6 [1, 21]. Terms with odd powers appear in
the third-order energy expression [1], and the general
formula for correlation energy increments resulting from
addition of a saturated shell of atomic basis functions of
angular momentum quantum number l has the form

DEcor
l ¼

X
m¼4

am lþ 1

2

� ��m

: ð3Þ

Integration of Eq. (3) gives [13]

Ecor
Lþ1 ¼ Ecor

1 þ
X
m¼4

Am�1 Lþ 1ð Þ�mþ1; ð4Þ

where Am=)am/(m)1). The integrated equation reveals
that the leading term of the basis set truncation error
decreases asymptotically as a function of L)3. Extrapo-
lations using asymptotic formulas are commonly done
for atoms, but application to molecules is more com-
plicated because the electronic orbital angular momen-
tum is not a good quantum number owing to a
nonspherical symmetry of molecules [19]. Also, basis sets
for molecular calculations are not optimally constructed
to satisfy the requirement of saturating the function
space of a given orbital angular-momentum quantum
number [19]. Nevertheless, when correlation-consistent
basis sets (cc-pVXZ, where X=D, T, Q, 5, or 6) of
Dunning [28] are used, the highest angular momentum
in the basis is L=X)1 for H and He, and L=X for Li–
Ar. Thus, if a compound is made up of both hydrogen
and first-row atoms, calculations with the cc-pVXZ basis
set would require a compromise between L and L+1 [6].
Taking this into consideration, Martin [6] proposed that

energies at the basis set limit could be obtained based on
the function

Ecor
X ¼ Ecor

1 þ Aa X þ 1

2

� ��a

; ð5Þ

where a value of 4 is appropriate for the coefficient a
when cc-pVXZ basis sets are used [6]. Helgaker et al. [7,
8] have proposed a simpler fitting function by taking
L=X and truncating the power series in Eq. (4) after the
first term, leading to an X)3 dependence:

Ecor
X ¼ Ecor

1 þ A3X�3: ð6Þ

Truhlar [9] has suggested that the value of the expo-
nent in Eq. (6) can be optimized for a particular method
and has shown that remarkably good accuracy can be
obtained with only cc-pVDZ and cc-pVTZ data [9].
Some of the truncations of the power series (Eq. 4) have
been systematically compared in a study of convergence
behavior of correlation energies of He, H2, and He2
and good performance of the truncation by Eq. (6) for
second-order correlation energies has been noted [12].
This work also suggests that the extrapolation based on
the equation

Ecor
X ¼ Ecor

1 þ A3X�3 þ A5X�5 ð7Þ

frequently yields smaller deviations from the exact value
than extrapolation based on Eq. (6). Klopper has ar-
gued that correlation energies should be decomposed
into singlet and triplet pair energies and extrapolated
separately because the singlet pair energies converge as
X)3, while the triplet pair energies show X)5 convergence
with the cardinal number [1, 14, 21].

Computational details

The minimum and the rotational saddle point of methanol were
optimized at the MP2(FC)/cc-pVTZ level with Gaussian 98 [29].
This level of theory gives remarkably good geometries and has been
shown to predict bond distances with standard deviations of 0.007–
0.01 Å when compared to the experimental data [4, 26]. Single-
point energies were calculated with cc-pVXZ basis sets of Dunning
and coworkers [28], where X=D, T, Q, 5, and 6. Valence corre-
lation energies were calculated at the MP2 to MP4(SDTQ) levels; in
addition CCSD and CCSD(T) calculations were performed when
practical. Reference values for the second-order correlation energy
were obtained from explicitly correlated MP2-R12/A calculations
using the program DIRCCR12-OS [30, 31]. Large basis sets spe-
cifically optimized for explicitly correlated calculations were used
[32]. The largest basis set used was 19s14p8d6f4g3h for oxygen,
19s14p8d6f4g for carbon, 9s6p4d3f for hydroxyl hydrogen, and
9s6p4d for methyl hydrogens. Both conformations of methanol
were restricted to CS symmetry.

The quantity of interest in conformational analysis is the rela-
tive energy of a conformation relative to some other conformation.
The basis set limit for relative energies can be obtained either by
extrapolating the energy of each conformer to the limit and taking
the difference, or by calculating relative energies at each level of
theory and extrapolating the difference. Furthermore, at the MPn
level the quantity that is being extrapolated can be either the nth
order correlation energy (e.g., total fourth-order correlation
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energy, DE(4), for MP4), the partial correlation energy due to cer-
tain excitations (e.g., ET

(4) describing the contribution from triple
excitations at the fourth order), or the total correlation energy
up to and including the nth order [DEc-

or(MP4)=DE(2)+DE(3)+DE(4)] [33].
Equation (1) was fitted to self-consistent-field (SCF) energies to

estimate the SCF limit. Exponential functions and several trunca-
tions of the power series were considered for fitting correlation
energies. The goodness of the fits was compared on the basis of
their v2 statistics values and the ability to correctly predict the
limiting value. The suitability of the models for extrapolation was
also judged based on how much the extrapolated value depended
on the choice of the data points that were included in the fit. A
good extrapolation scheme would have a small number of adjust-
able parameters, show a small value for the v2 statistics for a given
number of parameters, and would yield correct limiting values that
are independent of the choice of data points.

Results and discussion

Reference data

Methanol has one minimum and one rotational saddle
point. The experimental rotational barrier for methanol
has been estimated at 1.065 kcal/mol on the basis of the
analysis of its microwave spectrum [34]. To compare this
value with current ab initio results, zero-point energy
correction for all of the small-amplitude vibrations
must be taken into account. This correction has been
evaluated to be )0.064 kcal/mol [35] and thus the
‘‘experimental’’ energy difference between the two
conformations is 1.001 kcal/mol.

The second-order correlation energies for the anti
and syn conformers from explicitly correlated calcula-
tions are )484.620 and )484.623 mEh, respectively, with
the largest basis set tested. Convergence of MP2-R12/A
results as a function of the basis set size suggests that the
true value for the second-order energy is about
)484.9 mEh. The second-order correlation energy at the
CCSD-R12/A level was )490.0 mEh.

Traditional ab initio calculations

The ab initio energy differences calculated at various
levels of theory are summarized in Table 1. Inspection of
these results reveals the poor performance of the double-
zeta basis set, and suggests that electron correlation
effects are not very critical for the description of the
torsional barrier in methanol. Single-exponential fits of
total SCF energies give good convergence (Fig. 1) with

typical v2 values of 3–5·10)8. The extrapolated values
show a slight dependence on the points included in the
fits. The SCF energy difference between the rotational
saddle point and the ground state estimated by extra-
polating data from the three largest basis sets is
1.015 kcal/mol. The extrapolation including the three
smallest basis sets gives an energy barrier of 1.024 kcal/
mol. The latter extrapolation provides an improvement
over the cc-pVQZ results without significant additional
computational cost and is recommended for larger sys-
tems for which cc-pVQZ is the largest feasible basis set.

Second-order energies

The absolute magnitude of the second-order correlation
energy in methanol increases as the basis set is enlarged,
but its contribution to the barrier height decreases
(Table 2). Comparison of the SCF and MP2 energies
with the small basis sets in Table 1 suggests that second-
order correlation effects stabilize the minimum-energy
structure more than they stabilize the rotational saddle
point and thus increase the rotational barrier. However,
analysis of the behavior of E2 as the basis set is enlarged
reveals that the E2 contribution lowers the barrier
slightly. The results of a systematic comparison of
several commonly used extrapolation formulas are
summarized in Table 3. The single-exponential fit in
Eq. (1) and the double-exponential function of the form
Ecor

X ¼ Ecor
1 þ A exp �Xð Þ þ B exp �X 2

� �
are statistically

Table 1. Energy difference
(kcal/mol) between the
rotational saddle point and the
minimum-energy minimum
structure in methanol as a
function of basis set and
electron correlation treatment

Basis set SCF MP2 MP3 MP4 MP4(T) CCSD CCSD(T)

cc-pVDZ 1.316 1.494 1.435 1.449 1.480 1.441 1.464
cc-pVTZ 1.082 1.130 1.089 1.100 1.111 1.095 1.099
cc-pVQZ 1.035 1.053 1.022 1.030 1.035 1.027 1.026
cc-pV5Z 1.020 1.025 1.001 1.007 1.009 1.006
cc-pV6Z 1.018 1.019 0.997
Extrapolation 1.015 1.011 0.994 0.997 0.999 0.997

Fig. 1. Fit of a three-parameter single-exponential function Eq. (1)
to self-consistent-field (SCF) energies of methanol in the anti (open
squares) and syn (filled squares) conformations
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poor and significantly underestimate the correlation
energy at the limit, in agreement with previous reports
[26]. Extrapolation using Eq. (5) with a=4 is unreliable
with small basis sets and is only slightly better than the
exponential models with larger basis sets. When a in
Eq. (5) is optimized, a better fit is obtained but the
extrapolated energies are strongly basis set dependent.
We observed that a also depends on the points included
and that it differs significantly from the value of 3.9
found by Martin. The commonly used [7] fit of the
form E¥+A3X

)3 does not yield satisfactory results
when double-zeta basis set data are included, but per-
forms very well when both the cc-pVDZ and cc-pVTZ
data are excluded. The need to exclude cc-pVDZ
results when using Eq. (6) was stressed earlier [7, 8],
but our results suggest that extrapolations according
to Eq. (6) should also exclude cc-pVTZ data. The
model of the form E¥+A3X

)3+A4X
)4 and a related

two-parameter model E¥[1+A3X
)3(1+A4X

)1)], where
A4 ¼ 6:8470 exp 1:2234A3ð Þ � 1:0280 [13], were found to
give quite good fits; however, both models display some
systematic dependence of the extrapolated value on the
number of included points. In particular, both equations
appear to overestimate the correlation energy when cc-
pVDZ or cc-pVTZ data are included. The use of Eq. (7)
was inspired by a recent observation that such trunca-
tion yields very good results at the MP2 level [12]. It is
important to note that in the current work we use this
formula to extrapolate only the second-order correlation
energy, while Eq. (7) was used previously to extrapolate
total energies. Fitting Eq. (7) to the second-order
correlation energies gives good fits (Fig. 2) and the
extrapolated energy is only slightly dependent on the
choice of data points. Notably, the extrapolated energy
is within 1.5 mEh of the R12-MP2 value regardless of
the choice of data points. Last, separate extrapolations
of singlet and triplet pair contributions were tested.
Extrapolation of singlet pairs with the formula
E=E¥+A3X

)3 and triplet pairs with the formula
E=E¥+A3X

)5 underestimates second-order energies
significantly unless both the cc-pVDZ and the cc-pVTZ
data are excluded. In particular, the two-point fit
with cc-pVTZ and cc-pVQZ data gives a limiting value
that is 4 mEh above the MP2-R12 result. The discrep-
ancy originates mainly from the underestimation of
singlet pair energies and appears to be a general problem
[15]. Extrapolation of pair energies according to

Table 2. Second-order correlation energy (mhartrees) in anti and
syn conformers of methanol. The values in the last column indicate
the E2 contribution to the rotational barrier (kcal/mol)

Basis set E2 (anti) E2 (syn) E2 contribution

cc-pVDZ )338.2781 )337.9949 0.17772
cc-pVTZ )428.2066 )428.1295 0.04838
cc-pVQZ )459.5196 )459.4914 0.01768
cc-pV5Z )471.8995 )471.8923 0.00452
cc-pV6Z )477.3748 )477.3724 0.00149
MP2-R12 )484.6204 )484.6230 )0.00162
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E=E¥+A3(X+0.5))3 and E=E¥+A3(X+0.5))5 gives
good agreement with the MP2-R12 data when cc-pVDZ
results are excluded. All reliable extrapolation schemes
predict that the second-order valence correlation energy
in methanol is about 485 mEh and that the second-order
contribution to the energy barrier is less than 0.01 kcal/
mol. Fits to Eq. (7), and separate extrapolations of
singlet and triplet pair energies, suggest that the
rotational barrier is lowered by 0.002–0.006 kcal/mol.
The rotational barrier in methanol at the MP2 level is
estimated to be 1.011±0.002 kcal/mol.

Third-order energies

The convergence of the third-order correlation energy is
slow and the limiting value appears to approach zero
(Fig. 3). Power series truncated after the first term,
for example, Eq. (6), give poor fits (v2=1 · 10)5) but
several truncations after the second term give good
fits (v2=1 · 10)8) when cc-pVDZ data are excluded.
Partial-wave expansion of atomic correlation energies
suggests that the third-order energy should converge
as X)4 for natural parity singlet states and as X)6

for triplet states [1]. Extrapolation according to equa-
tions Ecor

X ¼ Ecor
1 þ A4X�4 þ A6X�6 and Ecor

X ¼ Ecor
1 þ

A4 X þ 0:5ð Þ�4 þ A6 X þ 0:5ð Þ�6 predicted that the limit-
ing value of the E3 contribution is about 3.5–4.0 mEh,

while fits according to Ecor
X ¼ Ecor

1 þ A3 X þ 0:5ð Þ�3þ
A5 X þ 0:5ð Þ�5 predicted a limiting value of 2.5 mEh. All
the models predicted that the E3 contribution lowers the
barrier by 0.017±0.005 kcal/mol. Fitting of differential
E3 contributions by a single-exponential function is also
statistically acceptable (v2=2 · 10)9) and predicts that
the E3 contribution is between 0.0018 and 0.0020 kcal/
mol. We estimate that the basis set limit for the
rotational barrier in methanol at the MP3 level is
0.994±0.005 kcal/mol. The E2 and E3 contributions
move to opposite directions as the basis set increases.

Such behavior is characteristic of so-called class II sys-
tems, where E2 overestimates and E3 corrects correlation
effects with finite basis sets [3]. Alcohols belong to
class II because the two electron pairs cluster in the lone-
pair region of the oxygen atom.

Fourth-order energies

Fourth-order correlation energies without triples con-
tribution are small and appear to converge reasonably
well (Table 4). The fit to Eq. (6) is poor and overesti-
mates the E4(SDQ) contribution unless cc-pVDZ results
are excluded. Fits to Eqs. (1) and (7) are of similar
quality and predict that the E 4(SDQ) contribution in the
basis set limit is about 2.55 mhartrees for both the
ground state and the rotational saddle point. The over-
all E 4(SDQ) contribution to the barrier height at the
basis set limit (0.003 kcal/mol) is almost negligible.
The magnitude of triples contribution to the fourth-
order correlation energy increases with increasing basis
set. The limiting values appear to be )19.5154 and
)19.5179 mhartrees for the anti and syn conformers,
respectively (Fig. 4); thus, the triples contribution in-
creases the rotational barrier by only 0.0015 kcal/mol.
In absolute terms, the triples contribution at the basis set
limit is significantly larger than pair correlation contri-
butions. This dominance of the triples contribution and

Fig. 3. Convergence of the third-order correlation energy with
respect to basis set size. The fit to a single-exponential function is
shown. The lines for the anti and the syn conformations overlap

Fig. 2. Convergence of the second-order correlation energy with
respect to basis set size. The fit to Eq. (7) is shown. The lines for the
anti and the syn conformations overlap

Table 4. Fourth-order correlation energy without triples contri-
bution (mhartrees) in anti and syn conformers of methanol. The
values in the last column indicate the E4 contribution to the
rotational barrier (kcal/mol)

Basis set E 4(SDQ) (anti) E 4(SDQ) (syn) E 4 contribution

cc-pVDZ )4.8772 )4.8545 0.0142
cc-pVTZ )3.7769 )3.7591 0.0112
cc-pVQZ )3.0807 )3.0672 0.0085
cc-pV5Z )2.9137 )2.9036 0.0063
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the increase of the absolute magnitude of the triples
contribution with increasing size of the basis set have
been observed previously for a number of compounds
[33].

Coupled-cluster energies

Coupled-cluster calculations at the CCSD level include
electron correlation effects due to singly and doubly
exited states to infinite order and provide an accurate
description of electronic structures near equilibrium
geometries. Little is known about the convergence
properties of coupled-cluster energies in molecules [36]
but applying X)3 extrapolation to the singlet pairs and
X)5 extrapolation to triplet pairs appears to give good
results [14]. We were able to perform CCSD calculations

up to and including cc-pV5Z basis sets (Table 5).
Somewhat surprisingly, the sign of the electron corre-
lation effect is incorrectly predicted with smaller basis
sets. None of the four extrapolation schemes performed
significantly better than the others (Table 6). Exponen-
tial functions typically give less negative limiting values
than truncated power series. The extrapolation based on
equation Ecor

X ¼ Ecor
1 þ A3X�3 þ A5X�5 is more accurate

than the exponential fit, but the strong dependence of
the limiting energies on the choice of points included
indicates that this may not be the best method to cal-
culate basis set limit energies at the CCSD level. Keeping
these limitations in mind, we estimate that the CCSD
contribution lowers the rotational barrier by 0.015–
0.020 kcal/mol from the SCF limit.

Comparison of CCSD(T) and MP4(SDTQ) results
suggests that higher-order correlation effects change
the barrier by no more than 0.001 kcal/mol. By adding
E 2, E 3, E 4(SDQ), and E4(T) contributions to the SCF
value, a focal-point estimate of 0.999±0.007 kcal/mol is
obtained for the rotational barrier in methanol. This
value is in excellent agreement with a precise experi-
mental result after correction for zero-point effects
[34, 35]. It should be noted that reproduction of energy
differences with such accuracy is possible for confor-
mational isomers because errors due to inaccuracies in
molecular geometries tend to cancel out when two
conformers of the same molecule are compared. For
practical calculations of conformational energies in
larger molecules, accuracy such as reported here for
methanol is rarely needed and one should ask what is the
computationally most economical approach to achieve
the desired accuracy.

Conclusions

Systematic convergence of energies of two conformers
with respect to basis set size can be employed to accu-
rately estimate conformational energies at the basis
set limit. Current results suggest that for molecules
without multiple bonds, extrapolation of HF energy
according to EHF

X ¼ EHF
1 þ A exp �BXð Þ and extrapola-

tion of second-order correlation energy according to
Ecor

X ¼ Ecor
1 þ A3X�3 þ A5X�5 using cc-pVDZ, cc-pVTZ,

and cc-pVQZ data may be a good approach. Separate
extrapolation of singlet and triplet pair energies
according to E=E¥+A3(X+0.5))3 and E=E¥+
A3(X+0.5))5, respectively, is recommended when

Fig. 4. Convergence of triples contribution at fourth order with
respect to basis set size. The fit to Eq. (7) is shown. The lines for the
anti and the syn conformations overlap

Table 5. Correlation energy at the CCSD level (mhartrees) in anti
and syn conformers of methanol. The values in the last column
indicate the CCSD contribution to the rotational barrier (kcal/mol)

Basis set ECCSD (anti) ECCSD (syn) ECCSD contribution

cc-pVDZ )363.11321 )362.91435 0.1247
cc-pVTZ )446.73658 )446.71558 0.0131
cc-pVQZ )473.46241 )473.47554 )0.0082
cc-pV5Z )482.47034 )482.49387 )0.0147

Table 6. Comparison of four different extrapolation formulas in predicting limiting values for the CCSD correlation energy of the anti
conformer of methanol. The E¥ values are given in milli hartrees. The CCSD-R12 estimate is )490.0 mEh

E¥+Aexp()BX) E¥+Aexp()X)+
Bexp()X2)

E¥+A3X
)3 E¥+A3X

)3+A5X
)5

E¥ v2 E¥ v2 E¥ v2 E¥ v2

2 fi 4 )486.0 )489.0 )486.5 2·10)5 )495.4
2 fi 5 )486.5 5·10)8 )488.3 2·10)7 )488.3 2·10)5 )493.9 5·10)7

3 fi 5 )487.0 )487.7 )492.5 5·10)7 )491.5
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cc-pV5Z or better second-order energies are available.
Extrapolations of third-order correlation energy may be
performed according to Ecor

X ¼ Ecor
1 þ A3X�3 þ A4X�4,

but cc-pVDZ data should be excluded. Extrapolation of
total correlation energies up to the fourth order or at the
CCSD level according to Ecor

X ¼ Ecor
1 þ A3X�3 þ A5X�5

appears to give satisfactory results.
Care must be exercised when interpreting correlation

effects calculated with finite basis. For example, calcu-
lations with cc-pVDZ and cc-pVTZ basis sets predict
that electron correlation increases the rotational barrier,
while extrapolation to the basis set limit reveals the
opposite effect.
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